10 research outputs found

    Eavesdropping Whilst You're Shopping: Balancing Personalisation and Privacy in Connected Retail Spaces

    Get PDF
    Physical retailers, who once led the way in tracking with loyalty cards and `reverse appends', now lag behind online competitors. Yet we might be seeing these tables turn, as many increasingly deploy technologies ranging from simple sensors to advanced emotion detection systems, even enabling them to tailor prices and shopping experiences on a per-customer basis. Here, we examine these in-store tracking technologies in the retail context, and evaluate them from both technical and regulatory standpoints. We first introduce the relevant technologies in context, before considering privacy impacts, the current remedies individuals might seek through technology and the law, and those remedies' limitations. To illustrate challenging tensions in this space we consider the feasibility of technical and legal approaches to both a) the recent `Go' store concept from Amazon which requires fine-grained, multi-modal tracking to function as a shop, and b) current challenges in opting in or out of increasingly pervasive passive Wi-Fi tracking. The `Go' store presents significant challenges with its legality in Europe significantly unclear and unilateral, technical measures to avoid biometric tracking likely ineffective. In the case of MAC addresses, we see a difficult-to-reconcile clash between privacy-as-confidentiality and privacy-as-control, and suggest a technical framework which might help balance the two. Significant challenges exist when seeking to balance personalisation with privacy, and researchers must work together, including across the boundaries of preferred privacy definitions, to come up with solutions that draw on both technology and the legal frameworks to provide effective and proportionate protection. Retailers, simultaneously, must ensure that their tracking is not just legal, but worthy of the trust of concerned data subjects.Comment: 10 pages, 1 figure, Proceedings of the PETRAS/IoTUK/IET Living in the Internet of Things Conference, London, United Kingdom, 28-29 March 201

    Information Leakage Attacks and Countermeasures

    Get PDF
    The scientific community has been consistently working on the pervasive problem of information leakage, uncovering numerous attack vectors, and proposing various countermeasures. Despite these efforts, leakage incidents remain prevalent, as the complexity of systems and protocols increases, and sophisticated modeling methods become more accessible to adversaries. This work studies how information leakages manifest in and impact interconnected systems and their users. We first focus on online communications and investigate leakages in the Transport Layer Security protocol (TLS). Using modern machine learning models, we show that an eavesdropping adversary can efficiently exploit meta-information (e.g., packet size) not protected by the TLS’ encryption to launch fingerprinting attacks at an unprecedented scale even under non-optimal conditions. We then turn our attention to ultrasonic communications, and discuss their security shortcomings and how adversaries could exploit them to compromise anonymity network users (even though they aim to offer a greater level of privacy compared to TLS). Following up on these, we delve into physical layer leakages that concern a wide array of (networked) systems such as servers, embedded nodes, Tor relays, and hardware cryptocurrency wallets. We revisit location-based side-channel attacks and develop an exploitation neural network. Our model demonstrates the capabilities of a modern adversary but also presents an inexpensive tool to be used by auditors for detecting such leakages early on during the development cycle. Subsequently, we investigate techniques that further minimize the impact of leakages found in production components. Our proposed system design distributes both the custody of secrets and the cryptographic operation execution across several components, thus making the exploitation of leaks difficult

    Nearest Neighbour with Bandit Feedback

    Full text link
    In this paper we adapt the nearest neighbour rule to the contextual bandit problem. Our algorithm handles the fully adversarial setting in which no assumptions at all are made about the data-generation process. When combined with a sufficiently fast data-structure for (perhaps approximate) adaptive nearest neighbour search, such as a navigating net, our algorithm is extremely efficient - having a per trial running time polylogarithmic in both the number of trials and actions, and taking only quasi-linear space

    A Touch of Evil: High-Assurance Cryptographic Hardware from Untrusted Components

    Get PDF
    The semiconductor industry is fully globalized and integrated circuits (ICs) are commonly defined, designed and fabricated in different premises across the world. This reduces production costs, but also exposes ICs to supply chain attacks, where insiders introduce malicious circuitry into the final products. Additionally, despite extensive post-fabrication testing, it is not uncommon for ICs with subtle fabrication errors to make it into production systems. While many systems may be able to tolerate a few byzantine components, this is not the case for cryptographic hardware, storing and computing on confidential data. For this reason, many error and backdoor detection techniques have been proposed over the years. So far all attempts have been either quickly circumvented, or come with unrealistically high manufacturing costs and complexity. This paper proposes Myst, a practical high-assurance architecture, that uses commercial off-the-shelf (COTS) hardware, and provides strong security guarantees, even in the presence of multiple malicious or faulty components. The key idea is to combine protective-redundancy with modern threshold cryptographic techniques to build a system tolerant to hardware trojans and errors. To evaluate our design, we build a Hardware Security Module that provides the highest level of assurance possible with COTS components. Specifically, we employ more than a hundred COTS secure crypto-coprocessors, verified to FIPS140-2 Level 4 tamper-resistance standards, and use them to realize high-confidentiality random number generation, key derivation, public key decryption and signing. Our experiments show a reasonable computational overhead (less than 1% for both Decryption and Signing) and an exponential increase in backdoor-tolerance as more ICs are added

    Snappy: Fast On-chain Payments with Practical Collaterals

    Full text link
    Permissionless blockchains offer many advantages but also have significant limitations including high latency. This prevents their use in important scenarios such as retail payments, where merchants should approve payments fast. Prior works have attempted to mitigate this problem by moving transactions off the chain. However, such Layer-2 solutions have their own problems: payment channels require a separate deposit towards each merchant and thus significant locked-in funds from customers; payment hubs require very large operator deposits that depend on the number of customers; and side-chains require trusted validators. In this paper, we propose Snappy, a novel solution that enables recipients, like merchants, to safely accept fast payments. In Snappy, all payments are on the chain, while small customer collaterals and moderate merchant collaterals act as payment guarantees. Besides receiving payments, merchants also act as statekeepers who collectively track and approve incoming payments using majority voting. In case of a double-spending attack, the victim merchant can recover lost funds either from the collateral of the malicious customer or a colluding statekeeper (merchant). Snappy overcomes the main problems of previous solutions: a single customer collateral can be used to shop with many merchants; merchant collaterals are independent of the number of customers; and validators do not have to be trusted. Our Ethereum prototype shows that safe, fast (<2 seconds) and cheap payments are possible on existing blockchains.Comment: Network and Distributed Systems Security (NDSS) Symposium 2020, 23-26 February 2020, San Diego, CA, US

    Adaptive Traffic Fingerprinting: Large-scale Inference under Realistic Assumptions

    Full text link
    The widespread adoption of encrypted communications (e.g., the TLS protocol, the Tor anonymity network) fixed several critical security flaws and shielded the end-users from adversaries intercepting their transmitted data. While these protocols are very effective in protecting the confidentiality of the users' data (e.g., credit card numbers), it has been shown that they are prone (to different degrees) to adversaries aiming to breach the users' privacy. Traffic fingerprinting attacks allow an adversary to infer the webpage or the website loaded by a user based only on patterns in the user's encrypted traffic. In fact, many recent works managed to achieve a very high classification accuracy under optimal conditions for the adversary. This paper revisits the optimality assumptions made by those works and discusses various additional parameters that should be considered when evaluating a fingerprinting model. We propose three realistic scenarios simulating non-optimal fingerprinting conditions where various factors could affect the adversary's performance or operation. We then introduce a novel adaptive fingerprinting adversary and experimentally evaluate its accuracy and operation. Our experiments show that adaptive adversaries can reliably uncover the webpage visited by a user among several thousand potential pages, even under considerable distributional shift (e.g., the webpage contents change significantly over time). Such adversaries could infer the products a user browses on shopping websites or log the browsing habits of state dissidents on online forums and encyclopedias. Our technique achieves ~90% accuracy in a top-15 setting where the model distinguishes the article visited out of 6,000 Wikipedia webpages, while the same model achieves ~80% accuracy in a dataset of 13,000 classes that were not included in the training set

    Serum Igf-1, Igfbp-3 Levels And Circulating Tumor Cells (Ctcs) In Early Breast Cancer Patients

    No full text
    Objective Insulin-like growth factor (IGF)-axis is involved in human oncogenesis and metastasis development for various solid tumors including breast cancer. Aim of this study was to assess the association between IGF-1, IGF-binding protein-3 (IGFBP-3) serum levels and the presence of circulating tumor cells (CTCs) in the peripheral blood of women diagnosed with early breast cancer (EBC), before and after adjuvant chemotherapy. Design 171 patients with early-stage breast adenocarcinomas were retrospectively evaluated. Immunoradiometric (IRMA) assays were employed for the in-vitro determination of IGF-1 and IGFBP-3 serum levels in blood samples collected after surgical treatment and before initiation of adjuvant chemotherapy. CTCs’ presence was assessed through detection of cytokeratin-19 (CK-19) mRNA transcripts using quantitative real time reverse transcription polymerase chain reaction (RT-PCR). IGF-1, IGFBP-3 serum levels were correlated with CTCs’ presence before and after adjuvant chemotherapy as well as with tumor characteristics including tumor size, axillary lymph node status, oestrogen (ER)/progestorene (PR) and human epidermural growth factor receptor 2 (HER2) receptor status. Log-rank test was applied to investigate possible association between IGF-1, IGFBP-3 serum levels and disease-free interval (DFI) and overall survival (OS). Results Before initiation of adjuvant therapy IGF-1, IGFBP-3 serum levels were moderately associated (Spearman\u27s rho = 0.361, p \u3c 0.001) with each other, while presenting significant differences across age groups (all p values \u3c 0.05). IGF-1 serum levels did not correlate with the presence of CTCs before initiation (p = 0.558) or after completion (p = 0.474) of adjuvant chemotherapy. Similarly, IGFBP-3 serum levels did not show significant association with detectable CTCs either before (p = 0.487) or after (p = 0.134) completion of adjuvant chemotherapy. There was no statistically significant association between the clinical outcome of patients in terms of DFI, OS and IGF-1(DFI: p = 0.499; OS: p = 0.220) or IGFBP-3 (DFI: p = 0.900; OS: p = 0.406) serum levels. Conclusions IGF-1 and IGFBP-3 serum levels before initiation of adjuvant chemotherapy are not indicative of CTCs’ presence in the blood and do not correlate with clinical outcome of women with early-stage breast cancer
    corecore